A 10-minute introduction to

SynRad+

A test-particle Monte Carlo simulator for synchrotron radiation

The basics

First, let's learn the SynRad+ terminology and the interface in a few slides.

Or, if you prefer learning by doing it, skip to the tutorial part.

Vertex

A vertex is a point in the 3D space.

Facet

A facet, also called polygon is a side of our 3D object. It is an outline that connects vertices.

It is an important term in SynRad+, as many properties (material, reflection type, counting modes) are *facet* parameters, which means that they can be adjusted individually for each facet.

The interface

- Set camera to preset positions
- Change projection type (orthographic / perspective)
- · Changes the mouse pointer's function
- Will be explained later in this guide

The viewers

SynRad allows you to use four different *viewers*, each of them can have different view settings and different camera angles. The active viewer is marked by the thick violet outline

Camera control

Left click

To select a facet, a vertex or a trajectory point, depending on the tool used (next slide)

Holding ALT and dragging with the left mouse button also moves the camera

Press and hold

the mousewheel to drag the camera

Scroll

The mousewheel to zoom in/out

Holding CTRL scrolls slower, holding SHIFT scrolls faster

Hold and drag

the right mouse button to rotate the camera

Holding CTRL and dragging with the right button also zooms in/out

Viewer Tools

To select things

Autoscale

Click to fit the whole geometry on in the viewer

Facet selector

Default setting. If you click several times on the screen, facets under your mouse pointer get selected in a cycle.

You can also draw a selection box by holding the left button to select facets inside the box.

CTRL-click: subtract from selection SHIFT-click: add to selection

Vertex selector

Click near a vertex on the screen: the vertex closest to your pointer gets selected.

You can also draw a selection box by holding the left button to select vertices inside the box.

CTRL-click: subtract from selection SHIFT-click: add to selection

Trajectory info

Allows you to read and visualize the direction, curvature and magnetic field vectors of a given trajectory point.

Click on a part of the trajectory and the nearest calculated point will be selected

Hand tool

Now deprecated by middle mouse button drag.

If selected, you can move the camera by dragging with the left mouse button.

Facet parameters

These are parameters can be set facet-by-facet:

Reflection type

Mirror: photons get reflected by their incident angle

Diffuse: Photons get reflected with a cosine-distributes angle (Lambertian surface)

Material: Photons get reflected taking their energy, incident angle and material roughness into account

Structures

Structures are parts of the geometry that are calculated separately. They allow some speedup of the simulation, but they are not part of this tutorial

Profile

If enabled, the absorbed flux and power distribution will be calculated along the local U or V vectors. Useful if you want to plot a curve within Synrad

Rules

Toggle the base vectors of the coordinate system

Normals

Show the orientation of the facet (interesting in case of 1-sided facets)

U, V vectors

The own 2D coordinate system of the selected facet

Lines

Photon trajectories

Transparent lines carry less power, opaques carry more (if generated fluxwise)

Leaks

If a photon escapes from the system, show where the last hit occurred and in what direction the photon went before leaving

Hits

Photon collisions with facets.

Red: Absorption

Blue: Photon creation

Green: Reflection

Volume Switch between volumetric or

wireframe view mode

Texture Show or hide textures (see later)

Tutorial: two dipoles in a tube

In this example, we insert two dipoles in a simple tube, and visualize the flux and power distribution of the synchrotron radiation of a beam. We also calculate the power spectrum.

Create geometry

From the Test menu, choose a test pipe with L/R ratio of 10

Let its surface consist of 20 facets:

 Now we have a (simple) geometry. It's time to add some magnetic regions where the beam will be calculated.

Add a region

Time to add our first magnetic region! Click on Regions / New...

• For compatibility reasons, regions are not part of the geometry file, they are saved separately. Specify the location where the new region will be saved:

Add a region

Now we will set up a beam passing a simple dipole:

Second region

Optional:

Repeat the above steps to **add a second region.** Change the starting point to 0.5,0.5,0, the Z limit to 3.0, and optionally make small changes in the magnetic field.

Begin the simulation

Now our simple system is ready. Launch the simulation by clicking

Visualize what's happening by turning on hits and lines display:

Doing calculations

Our system does the physics already, however, we'd like to obtain results. In the following, we'll see how to add *textures*, which are color-coded surfaces that show the distribution of SR flux and SR power.

We'll also set up *profiles*, distribution of the above along a line.

Finally, we'll calculate the *spectrum*, the energy distribution of the incident photons.

Normalization

Results are normalized *per scan*. One scan is when the number of generated photons equal the umber of calculated trajectory points²⁰ (statistically one photon is emitted from each point).

 Textures divide facet surface into cells, and each cell counts the SR flux and SR power incident on them

 Select a few (or all) facets where you'd like to visualize and calculate incident flux and power. Select multiple facets by holding the SHIFT key, unselect by holding the CTRL key:

• Add a MESH. A mesh splits the facet into little square blocks where the flux and power are individually calculated. Click in Facet parameters:

Turn on "Texture" in the viewer parameters to see the texture:

View texture block values by selecting a facet with mesh and opening the Texture Plotter:

Selected cells' position will be outlined on the facet:

You can export the table for post-processing by copying it to the clipboard

Adding a profile

 Profiles split facets into 100 equal slices along their U or V local vectors. Flux and power are calculated for each slice.

Adding a profile

• Select a side facet, and turn on the "u,v" vector display in the viewer parameters:

 The U and V vectors are visualized. (vector U points always from the first to the second vertex of a facet). You can rotate them by selecting Shift Vertex (CTRL+H) from the Facet menu

Adding a profile

 Once the U or V vector points toward the direction you want to "slice" the facet, turn on a profile in facet parameters:

• Don't forget to click *Apply*. From now on Synrad will count profile values. Run the simulation for a while to collect values.

Viewing the profile

To view the profile, open profile plotter:

Then choose the profile you just set (bottom)

left), and click Add Curve

Viewing the profile

 That's it. You can repeat the process and display several curves in the same plotter. (You can have unlimited facets with profile counting)

Adding a spectrum

 Spectrums show the incident photons' energy distribution.

Adding a spectrum

• They are added the same way as profiles: Select the desired facet, turn on *Record spectrum* in the parameters:

Then open Spectrum plotter and add the curves you want to

plot:

The end

- Stuck at one point?
- Found a bug?
- Have a suggestion?

Tell your ideas on the website, where you can also find a video tutorial.

(http://cern.ch/test-molflow)